Dexmart:
Programming by Demonstration

Rainer Jäkel, Andreas Hermann, Martin Lösch,
Steffen Rühl, Sven R. Schmidt-Rohr, Zhixing Xue, Rüdiger Dillmann

FZI - Forschungszentrum Informatik
Dexmart: Artificial Cognitive System

Execution → Planning, coordination and control

Observation

Activity observation

Activity execution

Action observation

Action execution

Motion/grasp multisensor observation

Dual arm/hand control

Planning, coordination and control

Symbolic representation of goals

Level of abstraction
Planning model generation

Motivation: Generation of planning models from observation and reasoning

- Planning enables acting in complex, variable environments
- Generation of models describing the planning problem is difficult
- Approach:
 - Different levels of abstraction with complementary planning methods
 - Generation of planning models from human demonstrations and reasoning on the scene
Planning model generation

Architecture for generation of planning models from observation and reasoning

- Lowest layer:
 Constrained manipulation strategy planning Programming by Demonstration
Planning model generation

Architecture for generation of planning models from observation and reasoning

- **Top layer:**
 Probabilistic mission planning Programming by Demonstration
Planning model generation

Architecture for generation of planning models from observation and reasoning

- **Intermediate layer:**
 Symbolic activity decomposition classical planning
 - Introduces additional actions such that a learnt strategy can be applied in complex scenes
Planning model generation

Architecture for generation of planning models from observation and reasoning

System overview:
Planning model generation

- Manipulation strategy Programming by Demonstration
Motivation: Manipulation in restricted workspaces
- Goal-directed motion planning

Aim: Generate a Strategy graph
- Planning model based on task constraints
- Nodes = Subgoals, e.g. where to place the bottle in the fridge door
- Arcs = Transitions, e.g. keep the bottle “upright” during the motion

Approach: Programming by Demonstration
Motivation: Manipulation in restricted workspaces
- Goal-directed motion planning

Aim: Generate a *Strategy graph*
- Planning model based on task constraints
- Nodes = Subgoals, e.g. where to place the bottle in the fridge door
- Arcs = Transitions, e.g. keep the bottle “upright” during the motion

Approach: Programming by Demonstration
- Learning models for planning of manipulation strategies

Strategy graph

Constraints (red):
- bottle position relative to fridge door
Manipulation Strategy Planning Model PbD

Human Demonstrations / Learning of the initial planning model

- **Demonstration:**
 - Multiple demonstrations of the same task in sensory environment
 - Recording of finger joints, wrist poses, object poses, tactile measurements, contacts

- **Learning the initial planning model:**
 - Graph structure: segmentation
 - Feature space defined by large set of automatically generated task constraints
 - Learning of constraint parameters
 - Relaxation of constraints to consider “correspondence problem”

→ Planning model is overspecialized
Manipulation Strategy Planning Model PbD

Generalization of initial planning model

- **Problem:**
 - Generalization to different environments and different objects is limited

- **Teaching:**
 - “Curriculum learning”: second set of more complex demonstrations
 - Pruning of inconsistent constraints

- **Automated robot tests in new scenes:**
 - Identify a maximal subset of task constraints, which admits a successful plan on a set of robot tests
 - Statistics about constraint inconsistencies
 - Parallelized optimization
Problem:
- Generalization to different environments and different objects is limited

Teaching:
- “Curriculum learning”: second set of more complex demonstrations
- Pruning of inconsistent constraints

Automated robot tests in new scenes:
- Identify a maximal subset of task constraints, which admits a successful plan on a set of robot tests
- Statistics about constraint inconsistencies
- Parallelization

Dexmart Workshop, Humanoids 2011
Bled, Slovenia • 26th October 2011
Specialization / Execution

- **Specialization:**
 - Learning of search heuristics based on past experience to speed up planning

- **Execution:**
 - Constrained Motion Planning using *Strategy graph*
 - Physics simulation to simulate non-rigid contacts
 - Mapping to different robots: Adero, Albert II, Armar (simulation), Justin (simulation), PR2 (simulation)
Planning model generation

- Mission model Programming by Demonstration
Motivation: Robotic mission with manipulation
- Proactive, coarse grained activity selection

Aim: Generate a *symbolic-probabilistic mission model*
- State, activity sets
- Causal effect probabilities (transitions)
- Goal rewards, activity costs
 → Execution time policy is computed

Approach: Programming by Demonstration for efficient generation
- Generates systems/planning model of mission as (PO)MDP from human demonstrations
 - Manipulation activities are elementary actions
Mission Model Planning Model PbD

Learning models for selection of activities from demonstrations

- **Demonstration: robot based observation**
 - Recording of human poses, object poses, classification of abstract manipulation activities, speech

- **State abstraction**
 - Autonomous state discretization by clustering, considering timing of abstract activities

- **Manipulation action abstraction**
 - Autonomous mapping of observed activities onto manipulation strategies, learned on the lower level of abstraction, by trajectory analysis
Mission Model Planning Model PbD

Learning models for selection of activities from demonstrations

- **Model generalization with interactive verification**
 - Preliminary, abstract state-action transition model generated by counting frequencies in demonstrations
 - In a typical set of demonstrations, some causalities are missing
 - Preliminary model is analyzed for potentially important causalities, similar to observed ones
 - Demonstrating human is queried to perform additional demonstrations, including the most important causalities

<table>
<thead>
<tr>
<th>Observed: $p(s = S_{48} \mid u = U_3, s = S_{23}) = 0.7$</th>
<th>$p(s = S_{48} \mid u = U_3, s = S_{24}) = 0.57$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_3 \quad \ldots \quad S_{47}' \quad S_{48}' \quad S_{49}' \quad S_{50}' \ldots$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$S_{22}' \quad \ldots \quad 0 \quad 0 \quad 0 \quad 0 \ldots$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$S_{23}' \quad \ldots \quad 0 \quad 0.7 \quad 0 \quad 0 \ldots$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$S_{24}' \quad \ldots \quad 0 \quad 0 \quad 0 \quad 0 \ldots$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$S_{25}' \quad \ldots \quad 0 \quad 0 \quad 0 \quad 0 \ldots$</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Generalizing over s, not u, not s'; S_{24}' similar to S_{23}'

Computing confidence and transition estimate:

- Confidence: $p(s = S_{48} \mid u = U_3, s = S_{24}) > 0.83$
- Estimated $p(s = S_{48} \mid u = U_3, s = S_{24}) = 0.57$

Relevance ranking $p(s = S_{48} \mid u = U_3, s = S_{24}) : #7$

Computing sequence suggestion:

- $S_{73} \rightarrow U_{11} \rightarrow S_{24} \rightarrow U_3 \rightarrow S_{48} \rightarrow U_8 \rightarrow S_{11} \ldots$

Several human demonstrations:

- Demonstrated $p(s = S_{48} \mid u = U_3, s = S_{24}) = 0.4$

<table>
<thead>
<tr>
<th>Model verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_3 \quad \ldots \quad S_{47}' \quad S_{48}' \quad S_{49}' \quad S_{50}' \ldots$</td>
</tr>
<tr>
<td>\ldots</td>
</tr>
<tr>
<td>$S_{22}' \quad \ldots \quad 0 \quad 0 \quad 0 \quad 0 \ldots$</td>
</tr>
<tr>
<td>$S_{23}' \quad \ldots \quad 0 \quad 0.7 \quad 0 \quad 0 \ldots$</td>
</tr>
<tr>
<td>$S_{24}' \quad \ldots \quad 0 \quad 0.4 \quad 0 \quad 0 \ldots$</td>
</tr>
<tr>
<td>$S_{25}' \quad \ldots \quad 0 \quad 0 \quad 0 \quad 0 \ldots$</td>
</tr>
</tbody>
</table>
Autonomous model refinement: Knowledge inference

- Robot specific skill errors cannot be learnt from observation of humans
- Error states, transitions and actions costs have to be deduced from background knowledge
- Preliminary model is completed using inference on an ontology

Autonomous model refinement: Dynamic simulation

- Transition probabilities for manipulation activities deduced from knowledge are not very precise
- Thus, simulation of deviations of situations observed in demonstrations
- Robot executes activities, effects evaluated in dynamics simulation
Planning model generation

- Decomposition, scheduling and monitoring
Motivation

- How can we create action sequences which fulfill a task in a given scene?
 - E.g. “move the tea box”
- Requires interaction between
 - The continuous real world and
 - A symbolic representation
Decomposition of activities

Generating a symbolic scene description

- **Physical simulation**
 - Translates a geometric scene model into a symbolic
 - Generated by simulation of motion primitives

- **Described aspects**
 - Effects of the motion of one object to another
 - Predicts, if an object can be manipulated without undesired effects

Dexmart Workshop, Humanoids 2011

Bled, Slovenia • 26th October 2011
Decomposition of activities

Graspability of objects

- Discretization of the table plane
- Graspability: Amount of graspable orientations in a 2D cell
 - How good can an object be grasped at that location
- Offline calculation by simulation of kinematics
- Application:
 - Find placement area
- Use only locations which are likely to be useful for planning
A symbolic planer adapts an action sequence based on the symbolic scene.

Actions are modeled using an occupancy grid:
- Freespace and
- Mechanical scene description as precondition.

Online queries to manipulation planner ensure feasibility of the execution.

Possible result: remove obstacles before manipulation.
Planning model generation

Example: Manipulation Strategy Planning Model PbD and Decomposition Planning

Artificial Cognitive System:
Learning manipulation strategies from human demonstrations for autonomous execution combined with decomposition planning and reachability analysis

– Progress and Integration Year 3 –
(Part of Brick A)
Planning model generation

Architecture for generation of planning models from observation and reasoning

Summary: